Status of experiments using the
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Motivation:
High Power FFAGs

FFAGs have not yet demonstrated:
1. High bunch charge capability
2. The fundamental limitations of FFAGs with high current beams
3. High repetition rates in the kHz range or CW beams
4. Better reliability than a synchrotron

In these experiments, we can potentially start to address (1) and (2).
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150 MeV ADSR FFAG

Scaling FFAG
Injection | | MeV, H- charge exchange
up to 100 or 150 MeV

(for more details see Y. Ishi’s talk, from Monday)
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Outline

Orbit matching

Closed orbit distortion & correction
Field index

Dispersion

Energy loss on the foil



Di tics In the ri
l List of monitors
7 ports for radial probes ( blue arrow, ICF70)
4 portable radial probes remote cntrl’'d
2 portable radial probes manual cntrl’d
1 unportable radial probe ( green arrow )
3 bunch monitors
1 faraday cup / 1 screen monitor
1 perturbator

+ | S| —+adial-prebe removed
¢ Fl radial probe
A S2 radial probe / hor. perturbator
i '.. S3 vert. perturbator
ext. kicker2 —
'\ S5 movable bunch mon.
ext. septum F5 radial probe
el Sé6 radial probe
(Fé6) Faraday cup / screen monitor
Q. 'f
= \ S7 bunch monitor
' ' “ F7 radial probe
S9 radial probe
S| bunch mon.( array of triangle plates)
Diagram courtesy Y. Ishi S12 bunch monitor




Diagnostics used

Added a Faraday cup
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Orbit Matching

e The beam follows a complicated trajectory
from the injection line through to the
stripping foil.
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® The horizontal orbit is currently optimised ‘by
hand' to ensure the largest transmission... Injection line (green) for the H-

ions into the ring

e centre of foil is not necessarily optimal...!

Vertical matching:

Match the vertical orbit using 3 steerers in
Injection line, using vertical double plate BPM
to minimise vertical coherent oscillation

Performed on 20/3/14 and again for more gl | | |
data on 24/3/14. 5 10 15 20

time [us]

Figure from'S. Machida, 24/3/14

vertical position [arb.]

Showed existing empirical optimisation was
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Closed Orbit Distortion (no RF)
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Closed orbit distortion

Cavity 50 mrad kick

m 1 | | | 1 ] I 1
60 - -
5 COD with
40 |- - )
, = cavity
20| o | |
0k 1.<} — i’:} -

P . —1 — \ RF Cavity out during

experimental run

60 - | Without cavity

From Y. Ishi 1/11/2013
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Closed Orbit Distortion with RF

* Study effects of corrector with RF cavity in place
* Closed orbit measurement with acceleration

Beam spirals outward as it is accelerated

— - o—

Probe doesn’t stop beam Probe stops part of beam Probe fully stops beam

—) | N | S
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Correction methods tried:

1) Main corrector pole

We achieve some correction,
but it is not perfect, even with
highest possible current

2) Additional coils on main
magnet

Not successful at present -
complex excitation of magnets
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Field index measurement

df/f from RF programme
d .
dfrff -(1-7) dr/r from measurement
(also assume gamma from RF)
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Dispersion

We have measured the dispersion:
® in the main ring
® at the position of the foil
® ata ‘slit’ before injection

All have different methods!
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Dispersion in the ring

® |f we use the same data as field index
measurement, we can calculate D = dr/(dp/p)

— i/ D~0.6
Three probes give
| slightly different results
C. Prior

we also did this for various corrector settings
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Dispersion at the foll

“Equivalent momentum method”

bunch
current

A A

foil

> -
position

Translate current to field strengt

vertical tune

Set D such that tune is the same

® F-mag: 0%
® F-mag -5%

(-5%) (-2%)

-
-
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0.504| ® F-mag +2% Y
wave/
.
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01T
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T. Uesugi

e Tune and profile at foil with different magnetic strength

no ‘flat top’
tells us beam bigger than foil!
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S. Machida
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Dispersion at the foil

® Measured dispersion function at foil after B calibration.

dr/(—dB/B) = —0.59 + 0.07 =50+

E ~55- %

¢ (Good agreement g —60 [

with Malek’s D _g5-
calculation. 3 .

=

©

o

Q

dr/(dp/p) = —0.57

|| | | 1
-3 -2 -1 0 1
field strength [%]

nb. definition of dispersion in a transport line

(5= (m me ) (B)+(B) - (S20) S e ™
using transfer matrix from tracking

Is fairly consistent with 0.6 value in ring ) science & Technology
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Dispersion control:
Dispersion at the slit before injection

M3 Q7 Q8 FDF

& MOVABLE SLIT o
\

2
i

/

o

1. Setup transfer line with calculated magnet settings
2. Adjust BMZ2, Q6, BM3, Q7, Q8 by ratio (-2%, -1%, 0%, +1%,
+2%)
® Move slit after Q8 and record bunch monitor signals on M1 &
M2 for each slit position

® ‘Peak ratio’ = P2(H- peak)/P1
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p2/pl [arb]

Experimental data
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nb. lower transmission.
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Dispersion results
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D=dx/(dp/p)=-0.18m D=dx/(dp/p)=-0.36m
cf. From inj. line model

cf. From inj. line model
D(s1)=-0.43| D(s1)=-0.98I
We found that the measured dispersion is not that
predicted by the model - by more than a factor of two.
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Why is the dispersion not as predicted?

PROFILE AT MP

10 mm
e KURRI team have now re-measured this X =

using real momentum change (adjusting
the linac) & profile monitor and the result

* In high D' region, D can easily vary with m

small error in magnet field setting. '

DTL2 tank field enter position

Image: T. Uesugi

L%

Ml bl

—4
—:
j
e

It is very important to
understand the real field
of injection line magnets!

FromY. Ishi
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horizontal COD (cm)

Dispersion and COD calculation
D. Kelliher

optics at 11 MeV

Starting with field in a scaling FFAG

r\ " sl
Bz — BZO N = horizontal
TO i | —  vertical

. . . . 0'?).0 0.11 ‘ 0.12 0.13 l 0.14 ] 0.15
Can show dispersion D is given by Cses
1 0.560
’r' ’r'o p k+1 A0.555—
1= — §o.550-
k _|_ 1 k —|_ 1 pO 0.545 - — Zgoubi
Calculate off-momentum closed orbit in Zgoubi, - ~ W
. . . . . ’ .0 0.1 0.2 0.3 0.4 0.5
compare dispersion with prediction ezimuthal angle (rad)

20 ‘ kick = '3|12 mradl

® @ probes
kick

 Alarge (+/- 30 cm) COD is measured at the
probes.

1I5p —

5| « We determined that the major source of
of COD is in the cavity region. Simulate in
= Zgoubi model by introducing kick in middle
o of single drift.
o 1 aiimutha?angle (4rad) 5 i Science & Technology
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Dispersion distortion

D. Kelliher

0.75 , kick = 1312 mradl

 What is effect of dipole kick on dispersion? |

0.65

Calculate the off-momentum COD in Zgoubi E060f

o) 0.55¢

with the dipole kick and find D, . 050

0.45+

* The dispersion distortion is defined as D, — 0.40
D 0.20

ideal* 0151

* The distortion in dispersion looks similar to o1
the COD itself, though with the opposite sign.

T 1
— ideal lattice

0.00
—0.05F

—0.10}
© — D distortion

—0.15H _ reflected COD

— I 1 Ll 1 1 1

0'200 1 2 3 4 5 6
azimuthal angle (rad)

tortion (m)

IS

D

nb. COD measurement
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Foll energy loss

Simulation performed by C. Rogers in Geant 4 for varying target
thicknesses to see energy loss and distribution

tun 0 turn 30 turn 70

Joum. o AL A i ol 8] e | A - - - — el -
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turn 0 turn 30 turn 70

20 ug/cm?2 foil
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Foll energy loss

Method: synchronous phase measurement as a function of RF voltage
1. check set RF frequency by circulating a bunch with RF off

2. set RF voltage & inject beam, find peaks in bunch monitor signal
vs those in RF signal to determine phase offset

3. fit phase vs RF voltage to determine energy change per turn

—_

>

dW = VOTCSin(¢S + ¢c)

Preliminary data had some issues
We have re-done the experiment
Still analysing... ST e e T e e e ey
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Foil scattering

®* Need to establish emittance growth from foll
vs emittance growth from space charge

r -

» Look at effect of foil on beam b R
emittance ‘
* No RF

* |nject 8 micron geometric )
emittance A
» Lose 50% of beam in first 200 | 1

turns
* |njection cycle is ~ 160 - 1200
turns

C. Rogers

Lower emittance growth for 10 ug/cm2 foil
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Future work

Understand injection line magnets to control
dispersion

Re-attempt dispersion matching (real p shift)

Optics matching (in progress with new fluorescent
monitor system)

Full analysis of foil energy loss data
Further simulation work including space charge

Develop methods for emittance growth
measurement



Beam current/power

With linac & H- injection:
|OnA average current (N=3.12 E+9 ppp)

|00 MeV, 20Hz rep rate
Bunch length < 100 us (injected), 0.1 us (extracted)

Average beam power = |0E-9 [A] * |00E+6 [eV]=I] W

Duty cycle factor: 0.1 us @ 20Hz = 1/(0.1E-6%20) = 5E+5
Instantaneous beam power = 500 kW

nb. Linac can in principle go up to 5mA & 100 Hz
This would give 5uA average current

Average power = 500 W
Instantaneous power (@100 Hz) = IE5 * 500W = 50 MW !

Science & Technology
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